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Abstract
Classical chaotic systems are distinguished by their sensitive dependence on
initial conditions. The absence of this property in quantum systems has led
to a number of proposals for perturbation-based characterizations of quantum
chaos, including linear growth of entropy, exponential decay of fidelity, and
hypersensitivity to perturbation. All of these accurately predict chaos in the
classical limit, but it is not clear that they behave the same far from the
classical realm. We investigate the dynamics of a family of quantizations of
the baker’s map, which range from a highly entangling unitary transformation
to an essentially trivial shift map. Linear entropy growth and fidelity decay
are exhibited by this entire family of maps, but hypersensitivity distinguishes
between the simple dynamics of the trivial shift map and the more complicated
dynamics of the other quantizations. This conclusion is supported by an
analytical argument for short times and numerical evidence at later times.

PACS number: 05.45.Mt

1. Introduction

A full characterization of quantum chaos is an elusive matter. Classical chaotic systems are
distinguished by their exponential sensitivity to initial conditions. Quantified in terms of
Lyapunov exponents, this characterization is the key ingredient in any definition of classical
chaos. The linearity of quantum mechanics prohibits such sensitivity to initial conditions,

0305-4470/06/4313405+29$30.00 © 2006 IOP Publishing Ltd Printed in the UK 13405

http://dx.doi.org/10.1088/0305-4470/39/43/002
mailto:ascott@qis.ucalgary.ca
mailto:tbrun@usc.edu
mailto:caves@info.phys.unm.edu
mailto:r.schack@rhul.ac.uk
http://stacks.iop.org/JPhysA/39/13405


13406 A J Scott et al

thus obstructing any straightforward extension of the classical definition of chaos to quantum
systems. The standard fix is to categorize as ‘chaotic’ those quantum systems that are chaotic
in a classical limit. These systems are not strictly chaotic by the classical definition—they are
quasiperiodic—but they have properties, involving the spectrum of energy eigenvalues and
the behaviour of energy eigenstates, that are distinctly different from that for quantizations of
classically regular systems.

So far, however, little agreement has been reached on a characterization of quantum chaos
that does not make reference to a classical limit. The classical approach of looking at small
perturbations of the initial state fails due to the unitarity of quantum dynamics. Attempts at a
direct dynamical characterization of quantum chaos, which applies even in the hard quantum
regime, thus generally look at the effects of small perturbations of the dynamics. A number
of perturbation-based criteria (or signatures) have been proposed, including linear growth
of entropy in the presence of stochastic perturbations [1, 2]; exponential decay of fidelity
between states that evolve under two close, but distinct unitary transformations [3, 4]; and
hypersensitivity to perturbation, which considers stochastic perturbations and compares the
amount of information known about the perturbation to the resulting reduction in the system
entropy [5–8], a relation called the information–entropy trade-off.

Typically, a quantum system whose classical limit is chaotic exhibits all three of these
signatures. They are clearly inequivalent, however. For instance, hypersensitivity to
perturbation can be viewed as a measure of how fast, how widely and how randomly the
set of all possible perturbed states spreads through Hilbert space. The other two criteria,
though they report on how widely the perturbed vectors are dispersed through Hilbert space,
are not sensitive to the exact way in which Hilbert space is explored by the perturbed dynamics.
It is therefore conceivable that there are quantum systems that are chaotic with respect to one
criterion, but regular with respect to another. In this paper we compare the three perturbation-
based criteria for a family of quantizations of the quantum baker’s map.

The classical baker’s map [9] is a well-known toy mapping whose study has led to
many insights in the field of classical chaos by demonstrating essential features of nonlinear
dynamics. It maps the unit square, which can be thought of as a toroidal phase space, onto
itself in an area-preserving way. Interest in the baker’s map stems from its straightforward
formulation in terms of a Bernoulli shift on binary sequences. It seems natural to consider a
quantum version of the baker’s map for the investigation of quantum chaos. There is, however,
no unique procedure for quantizing a classical map; hence, different quantum maps correspond
to the same classical baker’s transformation in the classical limit. The family of quantizations
[10] used in the present paper is based on the 2N -dimensional Hilbert space of N qubits. This
qubit structure provides a connection to the binary representation of the classical baker’s map.

The paper is organized as follows. In section 2 we introduce our mathematical notation
and give precise definitions of the three perturbation-based chaos criteria. Section 3 reviews
a family of quantizations for the quantum baker’s map. These range from a highly entangling
unitary transformation to an essentially trivial shift map. In section 4 we give simple analytical
results concerning the three criteria for the trivial shift map; these results show that the trivial
shift map exhibits linear entropy growth and exponential fidelity decay and suggest that it
does not display hypersensitivity to perturbation. Section 5 presents numerical calculations
for the entire family of baker’s maps. These calculations show that, unlike the other two
criteria, hypersensitivity to perturbation differentiates between the different quantizations. In
appendix A, we formulate a simple model for the form of the information–entropy trade-off
in the case of vectors distributed randomly on Hilbert space. The model serves as a foil for
interpreting the results of our numerical work on hypersensitivity. Appendix B derives the von
Neumann entropy of an ensemble of vectors that populate half of Hilbert space uniformly;
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this result is used to bound the information–entropy trade-off in the case that the amount of
information about the perturbation is 1 bit. Finally, in section 6 we discuss our results.

2. Criteria for quantum chaos

2.1. Hypersensitivity to perturbation

2.1.1. Definition of hypersensitivity. In the most general setting, hypersensitivity to
perturbation can be defined as follows [11]. Consider a system with Hilbert space S, evolving
under some unitary evolution and, in addition, interacting with an environment with Hilbert
space E . Let D and DE denote the Hilbert-space dimensions of the system and environment,
respectively. Initially, the joint state of the system and environment is assumed to be a product
state; i.e., initially there is no correlation. After a time t, the joint state of the system and
environment is a density operator on S ⊗ E , which we denote by ρ̂total. The state of the system
at time t, ρ̂, is obtained by tracing out the environment,

ρ̂ = trE(ρ̂total). (2.1)

The von Neumann entropy of the system at time t is

HS = −tr(ρ̂ log ρ̂). (2.2)

We measure entropy in bits (i.e. we take log ≡ log2).
Now assume that an arbitrary measurement is performed on the environment. The most

general measurement [12] is described by a positive-operator-valued measure (POVM), {Êr},
where Êr are positive operators acting on the environment and satisfying the completeness
condition ∑

r

Êr = 1̂1E = (environment identity operator). (2.3)

The probability of obtaining the measurement outcome r is given by

pr = tr(ρ̂total(1̂1S ⊗ Êr )), (2.4)

where 1̂1S is the identity operator on the system. The system state after a measurement that
yields the outcome r is

ρ̂r = trE(ρ̂total(1̂1S ⊗ Êr ))

pr

. (2.5)

We define the system entropy conditional on the outcome r,

Hr = −tr(ρ̂r log ρ̂r ), (2.6)

the average conditional entropy,

H̄ =
∑

r

prHr, (2.7)

and the average entropy decrease due to the measurement, �H̄ = HS − H̄ . Furthermore, we
define the average information,

Ī = −
∑

r

pr log pr. (2.8)

The quantity Ī is within 1 bit of the minimum average algorithmic information needed to
specify the measurement outcome r [13].
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Now assume we want to perform a measurement that reduces the average conditional
system entropy below some given target value, H. We define the quantity

Imin(H) = inf Ī , (2.9)

where the infimum is taken over all POVMs {Êr} such that H̄ � H . The function Imin(H)

expresses what we call the information–entropy trade-off; it can be interpreted as the minimum
information about the perturbing environment needed to keep the average system entropy below
the target value H. We say the system is hypersensitive to perturbation if this information is
large compared to the purchased entropy reduction �H = HS − H , i.e.,

Imin(H)

�H
� 1, (2.10)

in the region of small enough entropy reductions that this ratio reports on the system dynamics
rather than on the multiplicity of possible perturbations. We characterize this region more
precisely in the next subsection.

For the analysis of the present paper, we specialize to the case where initially the system
is in a pure state, |ψ0〉, and the unitary system evolution is given by a quantum map B̂. In
the absence of any interaction with the environment, the system state after t iterations (or time
steps) is B̂t |ψ0〉. In addition, we assume that the effect of the environment is equivalent to a
stochastic perturbation. At each time step, a perturbation is chosen randomly from a set of
unitary maps, {Uk : k ∈ K}, where K is some index set.

The joint system–environment density operator after t iterations is then given by

ρ̂total =
∑
k∈Kt

pk|ψk〉〈ψk| ⊗ P̂ E
k , (2.11)

where

|ψk〉 = Ûkt
B̂Ûkt−1B̂ · · · Ûk1B̂|ψ0〉 (2.12)

is the endpoint of a stochastic trajectory labelled by k = (k1, . . . , kt ), pk is the probability
of k, and the operators P̂ E

k are one-dimensional, orthogonal environment projectors. The
perturbation histories k = (k1, . . . , kt ) are thus recorded in the environment in the form of the
orthogonal projectors P̂ E

k . The reduced density operator for the system is given by

ρ̂ = trE(ρ̂total) =
∑
k∈Kt

pk|ψk〉〈ψk|. (2.13)

In the numerical analysis in section 5, we let the environment be a series of qubits, which
interact sequentially with the system; hence the perturbation at each time step is a binary
perturbation, K = {0, 1}.

It is in general very difficult to determine the function Imin(H) because it is generally
impossible to do the required optimization over all POVMs. In the numerical results reported
in section 5, we restrict the optimization to POVMs of the form

Êr =
∑
k∈Kr

P̂ E
k , (2.14)

where the subsets Kr ⊂ Kt are nonoverlapping subsets of the perturbation histories. Such
POVMs can be regarded as sampling a coarse-grained version of the perturbation histories.
For the special form of ρ̂total considered here, it seems reasonable that ensembles which are
optimal with respect to this class of measurements are also, to a good approximation, optimal
with respect to the class of all possible environment measurements. We have not, however,
been able to prove this statement rigorously.
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The measurements (2.14) correspond to forming groups of system vectors |ψk〉. Assuming
that all perturbations are equally likely, i.e., pk = 1/N for all k, where N is the number of
perturbation histories or system vectors |ψk〉, the probability of obtaining outcome r is given
by

pr = |Kr |/N , (2.15)

and the system state after a measurement that yields outcome r is the average of the grouped
vectors,

ρ̂r = trE(ρ̂total(1̂1S ⊗ Êr ))

pr

= 1

|Kr |
∑
k∈Kr

|ψk〉〈ψk|. (2.16)

We use this simplified framework in the discussion in sections 4 and 5 below.
Even this simplified framework is not sufficient to make the problem tractable for

numerical purposes, because the number of vectors, N , increases exponentially with the
number of time steps, rapidly making it impossible to search over all possible ways of
grouping the vectors |ψk〉. To get around this, we employ efficient algorithms for grouping the
vectors, which are plausibly able to find optimal or near-optimal groupings. For the numerical
results reported in section 5, we first use a particularly simple, but intuitive grouping algorithm
devised to clarify the procedure and then take a general approach based on genetic algorithms.
We have compared the results obtained using these algorithms with those obtained using other
grouping algorithms, some of which have been used previously [7], and found that the current
algorithms are generally superior for the vectors generated by the perturbed baker’s map.

2.1.2. Quantitative measure of hypersensitivity. Hypersensitivity to perturbation tests how
fast and how fully the state of the perturbed system explores the system Hilbert space. To see
how this is quantified by the information–entropy trade-off, we consider the trade-off relation
for vectors that are distributed randomly in Hilbert space. Such a relation was formulated
in [7, 11], using a model that groups the random vectors into spheres of uniform radius
(measured by Hilbert-space angle) on projective Hilbert space [14]. We refine this model and
its trade-off relation in appendix A. The main result is that for N vectors distributed randomly
in d Hilbert-space dimensions, the information–entropy trade-off, written in inverse form, is
approximated by

H =



logN − Imin, logN � Imin � logN − log d,

log d − 1

d
((1 + Imin ln 2) log(1 + Imin ln 2) − Imin), logN − log d � Imin � 1.

(2.17)

This expression assumes that d is large and that the number of random vectors, though large
in the sense that N � d, satisfies N � 2d , a situation we refer to as a sparse collection of
vectors. Examples of the information–entropy trade-off are shown in figure 3 (section 5), in
which the upper solid curve closely resembles the exact situation for random vectors in 32
dimensions; note that Imin follows H in a linear fashion before dropping quickly at a ‘knee’
close to the maximum entropy. This agrees with our approximation (2.17) for random vectors,
which is shown as the upper dotted line and the rightmost dotted curve in figure 3.

Several features of the sphere-grouping trade-off (2.17) deserve discussion. The number
of spheres, 2Imin , gives the number of vectors per group NV = N2−Imin . The knee at
Imin = logN − log d thus corresponds to NV = d. For Imin > logN − log d, i.e., NV < d, the
number of vectors in each sphere is insufficient to explore all the Hilbert-space dimensions.
This gives a linear dependence on Imin, with slope −1 and intercept logN . In the context of a
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stochastically perturbed map, where N is the number of perturbation histories, this part of the
trade-off relation tells us about the multiplicity of the perturbation instead of about the dynamics
of the map. In contrast, for Imin < logN − log d, i.e., NV > d, where the number of vectors in
each sphere is large enough to explore all Hilbert-space dimensions, the information–entropy
trade-off becomes independent of N . It is this part of the trade-off relation, beyond the knee
in the information–entropy trade-off, that tells us about hypersensitivity to perturbation in the
system dynamics. Note that we need N � d to investigate this region, but we do not need N
so large that a random collection of vectors would sample generic vectors, which requires at
least N ∼ 2d vectors, i.e., what we call a dense collection. Our stochastic perturbation need
only produce a sparse collection of vectors to see evidence of hypersensitivity; we can say that
the vectors in such a sparse collection are pseudo-random instead of random [15].

Projective Hilbert space can never be partitioned exactly into spheres of uniform radius.
This has little effect when the spheres are tiny and numerous, but it becomes a problem when
there are just a few spheres and prompts us to treat the sphere-grouping trade-off relation
with caution in this situation. In particular, for the case of just two groups, i.e., Imin = 1, a
better method for grouping random vectors is to partition projective Hilbert space into two
equal volumes defined by the closeness to two orthogonal subspaces of dimension d/2. The
resulting trade-off for Imin = 1 is analysed in appendix B and summarized below. We abandon
the trade-off relation (2.17) entirely for Imin < 1 because a grouping into spheres of uniform
radius makes no sense when there are fewer than two spheres.

We are now in a position to introduce a quantitative measure of a map’s hypersensitivity
to perturbation. For this purpose we introduce the quantity

s ≡ 1

HS − H(Imin = 1)
; (2.18)

1/s is the reduction in system entropy purchased by gathering one (optimal) bit of information
about the environment. In a Hilbert-space context, s is an indicator of the randomness in
a collection of vectors. It is a considerably more informative indicator than the entropy.
For example, the members of an orthonormal basis together achieve maximal entropy, yet
a grouping of these vectors into two equally sized groups gives s = 1, independent of the
dimension. In contrast, for vectors distributed randomly across Hilbert space, the sphere-
grouping trade-off relation (2.17) gives

s = 1

log d − H(Imin = 1)
= d

(1 + ln 2) log(1 + ln 2) − 1
≈ 3.5 d. (2.19)

While s provides a signature of randomness, it is the change in s with time, as applied to the
perturbed system vectors, which indicates the degree to which a system is hypersensitive to
perturbation. A rapid increase in s over time has been proposed as a criterion of chaos for
both classical and quantum systems [5]. In particular, if s increases exponentially with time,
we say that the system exhibits exponential hypersensitivity to perturbation [6, 8].

A detailed analysis [6] of stochastic perturbations of classically chaotic maps described
by a symbolic dynamics shows that for such systems, s is indeed a measure of the phase-space
stretching and folding characteristic of chaotic dynamics. Specifically, s grows as 2Kt , where K
is the Kolmogorov–Sinai entropy of the dynamics [16], showing that these systems do display
exponential hypersensitivity to perturbation and that exponential hypersensitivity is equivalent
to the standard characterization of classical chaos via the Kolmogorov–Sinai entropy, which
in turn is equivalent to characterization in terms of Lyapunov exponents.

For quantum systems, s is a measure of how fast and how fully the state of a perturbed
system explores the system Hilbert space. An exponential increase in s indicates both that
the number of dimensions, d, explored by the perturbed vectors grows exponentially and that
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the vectors populate the explored dimensions randomly. Thus s provides a direct dynamical
characterization of quantum chaotic dynamics, a characterization that is analogous to the
characterization of classical chaos in terms of sensitivity to initial conditions. The reason that
hypersensitivity to perturbation goes beyond the Zurek–Paz chaos criterion of linear entropy
increase under stochastic perturbations [1, 2] is clear: a linear entropy increase indicates that
the perturbed vectors explore an exponentially increasing number of dimensions, but is silent
on whether those dimensions are explored randomly.

A related parameter for characterizing hypersensitivity is the slope of the information–
entropy trade-off, |dImin/dH |, evaluated at Imin = 0 (i.e., H = HS ) or perhaps at Imin = 1.
Both the classical analysis in [6] and the analysis of appendix A prompt us to shy away from
using the slope evaluated at Imin = 0, since there are uncertainties about the behaviour of
the slope for very small values of Imin. Moreover, the slope evaluated at Imin = 1 seems
to have no advantages over the parameter s. Thus, in this paper, we calculate numerically
information–entropy trade-offs for the perturbed quantum baker’s maps, and from these we
determine the time evolution of the hypersensitivity parameter s, preferring it to the more
problematic use of the slope.

Having settled on s as our signature of hypersensitivity, we can formulate a better
information–entropy trade-off for random vectors when Imin = 1, i.e., for the case of two
groups. An optimal way of grouping a sufficiently dense collection of random vectors,
analysed in appendix B, is then the following: choose two orthogonal subspaces, each of
dimension d/2, and partition projective Hilbert space into two equal volumes defined by the
distance in Hilbert-space angle to these subspaces. The entropy of each partition is

H = d

2
(−λ+ log λ+ − λ− log λ−) ≈ log d − 1

πd ln 2
(2.20)

(cf equations (B.22) and (B.23) with n = d/2), where

λ± = 1

d

(
1 ± d!

2d [(d/2)!]2

)
≈ 1

d

(
1 ±

√
2

πd

)
(2.21)

(cf equations (B.20) and (B.21) with n = d/2). The approximate expressions on the right-hand
side hold for large d and give

s = 1

log d − H
= πd ln 2 ≈ 2.2 d. (2.22)

The coefficient 2.2, smaller than the 3.5 of equation (2.19), indicates that this is a better way
to partition random vectors into two groups. This value of s represents an approximate upper
bound for any collection of vectors in Hilbert space.

Another scenario that is important for the current study occurs when the perturbed vectors
are restricted to product states of N qubits. Random product vectors can be grouped into the
two groups corresponding to Imin = 1 by partitioning the projective Hilbert space of one of
the qubits into two equal volumes, just as above. The entropy of each partition for this qubit
is 2 − (3/4) log 3 (equation (2.20) with d = 2). Thus for all the qubits, the entropy of each
partition is

H = N − 3
4 log 3 + 1, (2.23)

which gives

s = 1

N − H
= 4

3 log 3 − 4
≈ 5.3, (2.24)

independent of D = 2N . This value represents a rather restrictive approximate upper bound
on s for product vectors.
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Suppose that for random product vectors, we partition the projective Hilbert spaces of j

constituent qubits into two equal volumes, thus using j = Imin bits of information to purchase
a reduction of the entropy to

H(Imin) = N − (
3
4 log 3 − 1

)
Imin ≈ N − Imin/5.3, (2.25)

for N � Imin � 0. This information–entropy trade-off, which, unlike equation (2.17), is linear
near the maximal entropy, is plotted as the lower dotted line in figure 3 (section 5). It shows
that nonentangling quantum maps are not hypersensitive to perturbation.

2.2. Other perturbation-based criteria for quantum chaos

Fidelity decay as a criterion for quantum chaos was introduced by Peres [3, 4] (see also [17–19]
and references therein). One compares the unitary evolution of an initial state |ψ0〉 under the
action of a quantum map B̂ with the evolution of the same initial state under the action of a
modified map, B̂ ′ = Û B̂, where the unitary map Û is close to the identity operator. According
to this criterion, a quantum map is chaotic if the fidelity,

F(t) = |〈ψ0|(B̂†Û †)t B̂t |ψ0〉|2, (2.26)

decreases exponentially with the number of iterations at short times. In contrast to the criterion
of hypersensitivity to perturbation, where the effects of a stochastic perturbation are analysed,
fidelity decay focuses on just two perturbation histories, corresponding to the unperturbed
evolution and to a modified evolution where the same perturbation operator Û is applied at
each time step.

Linear entropy increase as a chaos criterion was introduced by Zurek and Paz [1, 2].
According to this criterion, a quantum map is chaotic if the entropy (2.2) of the reduced system
density operator (2.1) increases linearly with the number of iterations at short times. As we
have already discussed, a linear entropy increase is essential for exponential hypersensitivity
to perturbation, but it is not the whole story.

3. Quantum baker’s maps

The classical baker’s map is a standard example of chaotic dynamics [9]. It is a symplectic
map of the unit square onto itself, defined through the equations

qn+1 = 2qn − �2qn, (3.1)

pn+1 = (pn + �2qn)/2, (3.2)

where q, p ∈ [0, 1), �x is the integer part of x, and n denotes the nth iteration of the map.
Geometrically, the map stretches the unit square by a factor of 2 in the q direction, squeezes
by a factor of a half in the p direction, and then stacks the right half onto the left.

Interest in the baker’s map stems from its straightforward symbolic-dynamical
characterization in terms of a Bernoulli shift on binary sequences. If each point of the
unit square is identified through its binary representation, q = 0 · s1s2 · · · = ∑∞

k=1 sk2−k and
p = 0 · s0s−1 . . . = ∑∞

k=0 s−k2−k−1 (si ∈ {0, 1}), with a bi-infinite symbolic string

s = . . . s−2s−1s0︸ ︷︷ ︸
p

• s1s2s3 . . .︸ ︷︷ ︸
q

, (3.3)

then the action of the baker’s map is to shift the position of the dot by one digit to the right,

s → s ′ = . . . s−2s−1s0s1︸ ︷︷ ︸
p′

• s2s3 . . .︸ ︷︷ ︸
q ′

. (3.4)
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It seems natural to consider a quantum version of the baker’s map for the investigation
of quantum chaos. There is, however, no unique procedure for quantizing a classical map:
different quantum maps can lead to the same classical baker’s transformation.

To construct a quantum baker’s map, we work in a D-dimensional Hilbert space, HD ,
spanned by either the position states |qj 〉, with eigenvalues qj = (j+1/2)/D, or the momentum
states |pk〉, with eigenvalues pk = (k + 1/2)/D (j, k = 0, . . . , D − 1). The constants of
1/2 determine the type of periodicity assumed for the position and momentum states, in
this case, |qj+D〉 = −|qj 〉, |pk+D〉 = −|pk〉, and thus identify HD with a toroidal phase
space with antiperiodic boundary conditions. The vectors of each basis are orthonormal,
〈qj |qk〉 = 〈pj |pk〉 = δjk , and the two bases are related via the discrete Fourier transform F̂D ,

〈qj |F̂D|qk〉 ≡ 〈qj |pk〉 = 1√
D

eiqj pk/h̄. (3.5)

For consistency of units, we must have 2πh̄D = 1.
The first work on a quantum baker’s map was done by Balazs and Voros [20]. Assuming

an even-dimensional Hilbert space with periodic boundary conditions, they defined a quantum
baker’s map in terms of a unitary operator B̂ that executes a single iteration of the map.
Saraceno [21] later improved certain symmetry characteristics of this quantum baker’s map
by using antiperiodic boundary conditions as described above. To define the Balazs–Voros–
Saraceno unitary operator in our notation, imagine that the even-dimensional Hilbert space
is a tensor product of a qubit space and the space of a (D/2)-dimensional system. Writing
j = x(D/2) + j ′, x ∈ {0, 1}, we can write the position eigenstates as |qj 〉 = |x〉 ⊗ |j ′〉,
where the states |x〉 make up the standard basis for the qubit, and the states |j ′〉 are a basis for
the (D/2)-dimensional system. The state of the qubit thus determines whether the position
eigenstate lies in the left or right half of the unit square. The Balazs–Voros–Saraceno quantum
baker’s map is defined by

B̂ = F̂D ◦ (
1̂12 ⊗ F̂−1

D/2

)
, (3.6)

where 1̂12 is the unit operator for the qubit, and F̂D/2 is the discrete Fourier transform on the
(D/2)-dimensional system. The unitary B̂ does separate inverse Fourier transforms on the
left and right halves of the unit square, followed by a full Fourier transform.

For dimensions D = 2N , an entire class of quantum baker’s maps can be defined in
analogy with the symbolic dynamics for the classical baker’s map [10]. In this case, we can
model our Hilbert space as the tensor-product space of N qubits, and the position states can be
defined as product states for the qubits in the standard basis, i.e.,

|qj 〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉, (3.7)

where j has the binary expansion

j = x1 . . . xN · 0 =
N∑

l=1

xl2
N−l (3.8)

and qj = (j + 1/2)/D = 0 · x1 . . . xN 1.
To make the connection with the symbolic dynamics for the classical baker’s map, we

proceed as follows. The bi-infinite strings (3.3) that specify points in the unit square are
replaced by sets of orthogonal quantum states created through the use of a partial Fourier
transform

Ĝn ≡ 1̂12n ⊗ F̂2N−n , n = 0, . . . , N, (3.9)
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where 1̂12n is the unit operator on the first n qubits and F̂2N−n is the Fourier transform on the
remaining qubits. The partial Fourier transform thus transforms the N − n least significant
qubits of a position state,

Ĝn|x1〉 ⊗ · · · ⊗ |xn〉 ⊗ |a1〉 ⊗ · · · ⊗ |aN−n〉 = |x1〉 ⊗ · · · ⊗ |xn〉 ⊗ 1√
2N−n

×
∑

xn+1,...,xN

|xn+1〉 ⊗ · · · ⊗ |xN 〉 e2π iax/2N−n

, (3.10)

where a and x are defined through the binary representations a = a1 . . . aN−n · 1 and
x = xn+1 . . . xN ·1. In the limiting cases, we have Ĝ0 = F̂D and ĜN = i1̂1. The analogy to the
classical case is made clear by introducing the following notation for the partially transformed
states:

|aN−n . . . a1 • x1 . . . xn〉 ≡ Ĝn|x1〉 ⊗ · · · ⊗ |xn〉 ⊗ |a1〉 ⊗ · · · ⊗ |aN−n〉. (3.11)

For each value of n, these states form an orthonormal basis and are localized in both position
and momentum. The state |aN−n . . . a1 • x1 . . . xn〉 is strictly localized in a position region of
width 1/2n centred at 0 · x1 . . . xn1 and is roughly localized in a momentum region of width
1/2N−n centred at 0 · a1 . . . aN−n1. In the notation of equation (3.3), it is localized at the
phase-space point 1aN−n . . . a1 • x1 . . . xn1. Note that |aN . . . a1•〉 = Ĝ0|a1〉 ⊗ · · · ⊗ |aN 〉 is
a momentum eigenstate and that |• x1 . . . xN 〉 = ĜN |x1〉 ⊗ · · · ⊗ |xN 〉 = i|x1〉 ⊗ · · · ⊗ |xN 〉
is a position eigenstate, the factor of i being a consequence of the antiperiodic boundary
conditions.

Using this notation, a quantum baker’s map on N qubits is defined for each value of
n = 1, . . . , N by the single-iteration unitary operator [10]

B̂N,n ≡ Ĝn−1 ◦ Ŝn ◦ Ĝ−1
n

=
∑

x1,...,xn

∑
a1,...,aN−n

|aN−n . . . a1x1 • x2 . . . xn〉〈aN−n . . . a1 • x1x2 . . . xn|, (3.12)

where the shift operator Ŝn acts only on the first n qubits, i.e., Ŝn|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ⊗
|xn+1〉 ⊗ · · · ⊗ |xN 〉 = |x2〉 ⊗ · · · ⊗ |xn〉 ⊗ |x1〉 ⊗ |xn+1〉 ⊗ · · · ⊗ |xN 〉. Note that since Ŝn

commutes with Ĝ−1
n , we can put B̂N,n in the form

B̂N,n = 1̂12n−1 ⊗ (
F̂2N−n+1 ◦ (

1̂12 ⊗ F̂−1
2N−n

)) ◦ Ŝn. (3.13)

Since Ŝ1 is the unit operator, it is clear that B̂N,1 is the Balazs–Voros–Saraceno quantum
baker’s map (3.6). It is worth mentioning here that Ermann and Saraceno [22] have recently
proposed and investigated an even larger family of quantum baker’s maps, which includes all
of the above quantizations as members. For the purposes of this paper, however, we need only
consider B̂N,n.

We can also write

B̂N,n = 1̂12n−1 ⊗ B̂N−n+1,1 ◦ Ŝn, (3.14)

which shows that the action of B̂N,n is a shift of the n leftmost qubits followed by an application
of the Balazs–Voros–Saraceno baker’s map to the N −n+1 rightmost qubits. At each iteration,
the shift map Ŝn does two things: it shifts the nth qubit, the most significant qubit in position
that was subject to the previous application of B̂N−n+1,1, out of the region subject to the next
application of B̂N−n+1,1, and it shifts the most significant qubit in position (first qubit) into the
region of subsequent application of B̂N−n+1,1.

The quantum baker’s map B̂N,n takes a state localized at 1aN−n . . . a1 • x1 . . . xn1 to a
state localized at 1aN−n . . . a1x1 • x2 . . . xn1. The decrease in the number of position bits and
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Figure 1. Husimi function for each partially Fourier transformed state (3.11) when N = 3:
(a) n = 3, (b) n = 2, (c) n = 0 and (d) n = 1. The action of the quantum baker’s map B̂3,3 is to
map the eight states in (a) to the eight states in (b), as shown by the numbers labelling the states.
Similarly, B̂3,2 and B̂3,1 map one set of partially Fourier transformed states to another, as indicated
by the arrows. The map B̂3,1 is the Balazs–Voros–Saraceno quantum baker’s map.

increase in momentum bits enforces a stretching and squeezing of phase space in a manner
resembling the classical baker’s map. In figure 1(a)–(d), we plot the Husimi function (defined
as in [23]) for the partially Fourier transformed states (3.11) when N = 3, and n = 3, 2, 0 and
1, respectively. The quantum baker’s map is a one-to-one mapping of one basis to another, as
shown in the figure.

One useful representation of our quantum baker’s maps, introduced in [10], starts from
using standard techniques [24] to write the partially transformed states (3.10) as product states:

|aN−n . . . a1 • x1 . . . xn〉 = eπ i(0·a1...aN−n1)

(
n⊗

k=1

|xk〉
)

⊗
(

N⊗
k=n+1

1√
2
(|0〉 + e2π i(0·aN−k+1...aN−n1)|1〉)

)
. (3.15)
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These input states are mapped by B̂N,n to output states

|aN−n . . . a1x1 • x2 . . . xn〉 = eπ i(0·x1a1...aN−n1)

(
n⊗

k=2

|xk〉
)

⊗
(

N⊗
k=n+1

1√
2
(|0〉 + e2π i(0·aN−k+1...aN−n1)|1〉)

)
⊗ 1√

2
(|0〉 + e2π i(0·x1a1...aN−n1)|1〉).

(3.16)

These forms show that the quantum baker’s map B̂N,n shifts the states of all the qubits to the
left, except the state of the leftmost qubit. The state |x1〉 of the leftmost qubit can be thought
of as being shifted to the rightmost qubit, where it suffers a controlled phase change that is
determined by the state parameters a1, . . . , aN−n of the original ‘momentum qubits’. The
quantum baker’s map can thus be written as a shift map on a finite string of qubits, followed
by a controlled phase change on the least significant qubit in position. In [25] this shift
representation was developed into a useful tool. Using an approach based on coarse graining
in this representation, the classical limit of the quantum baker’s maps was investigated.

The classical limit for the above quantum baker’s maps was also investigated in [23],
using an analysis based on the limiting behaviour of the coherent-state propagator of B̂N,n.
When D = 2N → ∞, the total number of qubits N necessarily becomes infinite, but one has
a considerable choice in how to take this limit. For example, we could use only one position
bit, thus fixing n = 1, and let the number of momentum bits N − 1 become large. This is the
limiting case of the Balazs–Voros–Saraceno quantization. There is, however, a wide variety of
other scenarios to consider, e.g., n = N/2 or n = 2N/3 − 1 as N → ∞. In [23] it was shown
that provided the number of momentum bits N − n approaches infinity, the correct classical
behaviour is recovered in the limit. If the number of momentum bits remains constant, i.e.,
n = N − k (k constant) as N → ∞, a stochastic variant of the classical baker’s map is found.
In the special case n = N this variant takes the form

s = . . . s−2s−1s0 • s1s2s3 . . . → s ′ = . . . s−2s−1s0r • s2s3 . . . (3.17)

when written in the symbolic-dynamical language of equation (3.3). The bit r takes the value
s1 with probability cos2[π/2(0 · s0s−1s−2 · · · − 1/2)] (and 1 − s1 otherwise). These results are
consistent with those obtained previously [25].

The extremal map has other interesting properties. All finite-dimensional unitary
operators are quasi-periodic; the quantum baker’s map B̂N,N , however, is strictly periodic,

(B̂N,N)4N = 1̂1, (3.18)

as we show below. All its eigenvalues, therefore, are 4N th roots of unity, i.e., of the form
eπ ik/2N , and hence, there are degeneracies when N > 4. This represents a strong deviation
from the predictions of random matrix theory [26]. The eigenstates of the extremal map were
recently studied by Anantharaman and Nonnenmacher [27], where B̂N,N (with periodic rather
than antiperiodic boundary conditions) was called the ‘Walsh-quantized’ baker’s map. The
above degeneracy in the eigenvalues allows constructions of eigenstates that remain partially
localized in the semiclassical limit, which means that ‘quantum unique ergodicity’ [28] fails
for this quantization.

The periodicity of the extremal map (3.18) can be easily shown after noting that
B̂N,N = −iĜN−1 ◦ ŜN = −i(1̂12N−1 ⊗ F̂2) ◦ ŜN ; i.e., B̂N,N is a shift followed by application of
the unitary

Ĉ ≡ −iF̂2 = 1√
2
(e−π i/4(|0〉〈0| + |1〉〈1|) + eπ i/4(|0〉〈1| + |1〉〈0|)) = e−π i/4 e(πi/4)σ̂x , (3.19)
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which is a rotation by 90◦ about the x axis, to the least significant position qubit. On product
states, the action of B̂N,N can be written explicitly as

B̂N,N |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 = |ψ2〉 ⊗ · · · ⊗ |ψN 〉 ⊗ Ĉ|ψ1〉. (3.20)

Since Ĉ4 = 1, we get the property (3.18). One can also see that B̂N,N cannot entangle initial
product states.

When n < N , the action of the quantum baker’s map is similar to equation (3.20), but
with a crucial difference. After the qubit string is cycled, instead of applying a unitary to the
rightmost qubit, a joint unitary is applied to all of the N −n+ 1 rightmost qubits. As discussed
above, this joint unitary can be realized as controlled phase change of the rightmost qubit,
where the control is by the state parameters a1, . . . , aN−n of the original momentum qubits.
This controlled phase change means that initial product states become entangled.

Entanglement production under iterations of the quantum baker’s maps was the subject
of a recent paper [29]. Since the entangling controlled-phase change involves an increasing
number of qubits as n decreases from n = N to n = 1 (the Balazs–Voros–Saraceno map),
one might expect that the entanglement increases as n ranges from N to 1. What was found,
however, is that provided n is not too close to N, all the maps are efficient entanglement
generators, but the greatest entanglement is produced when n is roughly midway between N
and 1. Starting with a uniform distribution of initial product states, the mean entanglement
‘quantum-baked’ into the distribution was found to saturate at a level near to that expected in
random states. The small deviations from the entanglement of random states might be due to
hidden symmetries in the quantum baker’s maps [30].

Lastly, we mention another difference between the extremal quantum baker’s map B̂N,N

and other members of the baker’s map family of quantizations. Ermann, Paz, and Saraceno
[31] have found that when a system with the dynamics of a quantum baker’s map is cast in the
role of an environment acting on another quantum system, the extremal quantum baker’s map
B̂N,N is less effective at inducing decoherence than other members of the family. In particular,
they showed that while the entropy production rates of the different quantum baker’s maps
are indistinguishable on a short time scale, which scales linearly with N, B̂N,N saturates much
sooner than the other maps, thus displaying the behaviour expected for regular systems.

In view of the above described anomalous behaviour experienced by the extremal
map, B̂N,N , our curiosity now invites an investigation into the various currently prevailing
perturbation-based tests for quantum chaos, as applied to our class of quantum baker’s maps.
We start, however, by investigating the simplest example, the extremal map B̂N,N itself.

4. Chaos in the extremal quantum baker’s map?

4.1. The extremal map and perturbations

In section 3 we considered different quantizations of the baker’s map as unitary
transformations, B̂N,n (n = 1, . . . , N), on a set of N qubits. When written in the form (3.14),
each of these transformations consists of two steps: a cyclic shift, Ŝn, in which the n leftmost
qubits are shifted without otherwise being altered and a unitary transformation on the rightmost
N − n + 1 qubits. For the extremal quantum baker’s map, n = N , which we consider in this
section, this second transformation is the gate Ĉ of equation (3.19), which acts only on the
single rightmost qubit as in equation (3.20) and rotates it by 90◦ about the x axis.

We first examine the behaviour of B̂N,N under perturbations after each iteration. In an
effort not to affect qualitatively the dynamics of the map itself, we choose our perturbations
to be correlated across the smallest possible distances in phase space. One choice might then
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be to perturb only the single rightmost, least significant qubit in the position basis. Indeed,
such a choice leads to the smallest changes in position. As a consequence of the uncertainty
principle, however, perturbing the least significant qubit in the position basis causes correlated
changes across the greatest distances in momentum. In opposition to our classical intuition,
no single qubit can be thought of as being ‘more significant’ than another in an overall
phase-space sense. Our particular choice of qubit upon which to perturb does not affect
the phase-space area of correlated changes made to a state; however, perturbations affecting
the middle qubit(s) give rise to correlated changes across the smallest phase-space distances.
In the present analytical study, it is simplest to take the rightmost qubits as being the least
significant. These considerations are revisited later in our numerical investigations, where we
instead choose to perturb the middle qubit(s).

Suppose that with each step we perturb the m rightmost qubits, where m � N , by
applying an m-qubit unitary transformation Û

(m)
k chosen at random. For the moment, we

assume that any transformation is allowed, but the arguments still work even if only a finite
set of transformations is allowed.

For simplicity, we assume that the system is initially in the tensor-product state |0〉⊗N .
Suppose that m = 1 and that the perturbation affects only the single rightmost qubit. Then
the perturbation operators are all of the form 1̂12N−1 ⊗ Û

(1)
k , and the state after a single step

becomes

|0〉⊗N → |0〉⊗N−1 ⊗ (
Û

(1)
k1

Ĉ|0〉), (4.1)

while the next step transforms it to

|0〉⊗N−1 ⊗ (
Û

(1)
k1

Ĉ|0〉) → |0〉⊗N−2 ⊗ (
Û

(1)
k1

Ĉ|0〉) ⊗ (
Û

(1)
k2

Ĉ|0〉), (4.2)

and so forth. It is clear that the above dynamics does not explore the entire Hilbert space, since
the state remains a tensor product as long as the perturbation is restricted to a single qubit.

The situation changes if we let m = 2. Since two-qubit gates between nearest neighbours
are sufficient for universal quantum computation, any state can be produced by the shift map
plus two-qubit perturbations. It does not follow, however, that all states can be reached
quickly; in general, the number of gates needed to reach a generic state of N qubits increases
exponentially with N, which implies that many ‘rounds’ (complete sets of N steps) are needed
to reach most states. On the other hand, as we saw in section 2.1.2, the perturbation need not
sample generic vectors to elicit evidence for hypersensitivity, so considerations of universality
in quantum computation and the time needed to sample generic states provide little information
about hypersensitivity.

4.2. Signatures of chaos for B̂N,N

In this section we show that the extremal quantum baker’s map is chaotic according to two
popular signatures of quantum chaos: it displays a linear entropy increase when coupled to an
environment, and the fidelity between two vectors evolving according to the original map and
a slightly changed version of the map decreases exponentially. It does not, however, display
hypersensitivity to perturbation.

4.2.1. Fidelity decay. Define a modified baker’s map by

B̂ ′
N,N |x1〉 ⊗ · · · ⊗ |xN 〉 ≡ |x2〉 ⊗ · · · ⊗ |xN 〉 ⊗ Û (1)Ĉ|x1〉, (4.3)

where Û (1) is a single-qubit unitary map satisfying 0 < |〈0|Ĉ†Û (1)Ĉ|0〉| < 1. We can define
λ = −2 ln|〈0|Ĉ†Û (1)Ĉ|0〉| > 0. Letting |ψ(t)〉 = (B̂N,N)t |ψ0〉 and |ψ ′(t)〉 = (B̂ ′

N,N)t |ψ0〉,
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where |ψ0〉 = |0〉⊗N , we see that the fidelity decreases exponentially with the number of
iterations:

F(t) = |〈ψ ′(t)|ψ(t)〉|2 = e−λt , t = 0, . . . , N. (4.4)

For greater numbers of iterations, the simple exponential decay is modified as the qubits
experience more than one application of Ĉ or Û (1)Ĉ.

4.2.2. Linear increase of entropy. Let the environment be a collection of qubits in the
maximally mixed state. After each iteration of the map, the register interacts with a fresh
environment qubit. The interaction is given by a controlled σ̂x operation, with the environment
qubit acting as control and the target being the rightmost system qubit. In the notation of
section 2.1.1, this binary perturbation amounts to an application of one of Û0 = 1̂12N or
Û1 = 1̂12N−1 ⊗ σ̂x (chosen with equal probability) at each time step (this stochastic perturbation
is the m = 1 model of section 4.1, with the single-qubit perturbation unitaries restricted to
the identity and σ̂x). After tracing out the environment, one iteration of the perturbed map is
described by the quantum operation

B(ρ̂) = 1
2 B̂N,N ρ̂B̂

†
N,N + 1

2 (1̂12N−1 ⊗ σ̂x)B̂N,N ρ̂B̂
†
N,N(1̂12N−1 ⊗ σ̂x). (4.5)

For the initial state ρ̂0 = (|0〉〈0|)⊗N , and denoting by Bt the t-th iterate of B, we have

Bt (ρ̂0) = (|0〉〈0|)⊗(N−t) ⊗ (1̂12/2)⊗t , (4.6)

since σ̂x commutes with Ĉ. The entropy of Bt (ρ̂0) is t bits. The entropy thus increases at a rate
of 1 bit per iteration until it saturates at N bits after N steps. Under single-qubit perturbations, it
is clear that the perturbed vectors explore an exponentially increasing number of Hilbert-space
dimensions, but it is equally clear that they do not explore these dimensions randomly.

4.2.3. Hypersensitivity to perturbation. From the discussions in sections 2.1.2 and 4.1,
it can be seen that B̂N,N is not hypersensitive to perturbations that affect only the single
rightmost qubit. For an extreme example of this, consider the binary perturbation in
section 4.2.2 immediately above. After t � N map iterations, there are 2t perturbation
histories, which, with the initial state |ψ0〉 = |0〉⊗N , correspond to orthogonal system vectors:

|ψk〉 = |0〉⊗(N−t)Ĉ|k1〉 ⊗ · · · ⊗ Ĉ|kt 〉, (4.7)

where ki ∈ {0, 1}, in the notation of section 2.1.1. A measurement on the environment that
groups these vectors according to the values of k1, . . . , kj , with 0 � j � t , reduces the average
system entropy from HS = t to H(Imin = j) = t − Imin bits. When t = N , the perturbed
system vectors make up an orthonormal basis, and for t � N , the perturbation produces 2t−N

copies of an orthonormal basis. Thus, for t � N , the information–entropy trade-off relation
is H(Imin) = N − Imin. For all t, our hypersensitivity parameter takes the value s = 1. In this
extreme example, each bit of information purchases a bit of entropy reduction, as is always
true when the perturbed vectors are drawn from an orthonormal basis with each vector in the
basis having the same overall probability.

In general, stochastic perturbations that affect only a single qubit of the extremal quantum
baker’s map are expected to produce an information–entropy trade-off that is linear (to good
approximation) near the maximal entropy. Although the hypersensitivity parameter generally
varies with both the choice of perturbation and number of map iterations, its magnitude should
not exceed 5.3, the bound on s for product states (equation (2.24)). The extremal map B̂N,N ,
therefore, does not exhibit exponential hypersensitivity to perturbation under single-qubit
perturbations. By contrast, we have seen above that it does exhibit linear growth of entropy
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and exponential decay of fidelity. Hypersensitivity to perturbation is evidently a finer sieve
than the other two perturbation-based criteria.

The reason the perturbed extremal map does not explore Hilbert space efficiently is that
the map itself produces no entanglement. In contrast, the nontrivial quantizations of the
baker’s map are efficient entanglement generators [29], producing entanglement that saturates
after several iterations at a level close to that expected in random states. For these nontrivial
quantizations, even a single-qubit perturbation, together with the entangling transformation of
the unperturbed map, generically gives rise to a universal set of unitary gates, so in time the
system can approach any state in the Hilbert space. Although the speed at which this happens
remains unknown, our numerical results for hypersensitivity to perturbation, presented in the
next section, suggest that if n is not too close to N, the perturbed nontrivial quantizations do
efficiently explore all of Hilbert space.

Both the simple analytical argument above and the numerical results in the next section
are for single-qubit perturbations. A systematic study of hypersensitivity to perturbations
acting on two or more qubits is beyond our current numerical capabilities. In the remainder
of this section, we present an analytical argument that suggests that, for a small number of
time steps and for maps close to the extremal map B̂N,N , the information–entropy trade-off is
linearly bounded even for entangling perturbations acting on two qubits.

We choose a perturbation that affects the two rightmost qubits, i.e., k = 2. Given some
reasonable assumptions about the stochastic perturbation, if we average over all perturbations,
the state after t steps is approximately equal to

ρ̂(N) ≈ (|0〉〈0|)⊗N−t−1 ⊗ (1̂12/2)⊗t+1. (4.8)

This state has von Neumann entropy HS = t + 1. We would like to acquire some information
Imin about the perturbations which enables us to reduce this entropy by a small amount
�H = HS − H .

We now show that the ratio Imin/�H is bounded above by a quantity that is independent
of t for all t < N . Suppose that after t steps, our system is in state (4.8). Now let us apply
B̂N,N , but not the perturbation. If we trace out all but the two least significant qubits, these
two qubits are in the state

ρ̂(2) = 1̂12/2 ⊗ Ĉ|0〉〈0|Ĉ†, (4.9)

which has 1 bit of entropy. The perturbation affects only these 2 bits, so the state of the other
N − 2 qubits is irrelevant to the entropy increase. Now we apply the perturbation and get

ρ̂(2) →
∑

ξ

pξ Ûξ ρ̂
(2)Û

†
ξ = (1̂12/2)⊗2, (4.10)

where ξ labels which perturbation is performed, pξ is the probability of that perturbation, and
Ûξ is the corresponding two-qubit unitary transformation. The entropy of the new state is
2 bits, giving an entropy increase of 1 bit.

Clearly, we can reduce the entropy by 1 bit if we can determine which Ûξ was actually
performed. If the perturbations are drawn from a discrete set, the number of bits needed to
determine this is given by the entropy of the distribution pξ , i.e.,

Imin � −
∑

ξ

pξ log pξ . (4.11)

If ξ is continuous, then fully determining Ûξ would require an infinite amount of information.
Since the space of two-qubit operators is not very large, however, it does not take that much
information to know Ûξ to a good approximation; e.g., we could achieve an entropy reduction
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of nearly a bit at a cost of approximately 45 bits by knowing each of the 15 relevant parameters
of an arbitrary two-qubit unitary with 3 bits of precision.

This procedure, while not necessarily optimal, places a rather low bound on the ratio
Imin/�H , a bound independent both of the number of iterations, t, and the number of qubits,
N. This argument changes little if we use B̂N,N−1 instead of B̂N,N , or B̂N,N−k for k small
compared to N. Nor does it change much if the perturbation affects k bits, so long as k is small
compared to N. If the perturbation affects many bits, however, or if a quantization B̂N,N−k is
used for large k, the upper bound on Imin/�H becomes so large that it gives little restriction.

The above provides some evidence for the conjecture that maps close to the extremal
map, B̂N,N , do not exhibit exponential hypersensitivity to entangling perturbations. Since
these results are valid only as long as t � N , i.e., as long as the number of iterations does not
exceed the number of qubits, this evidence must be regarded as suggestive, but inconclusive.

5. Numerical results

We now investigate numerically the entire class of quantum baker’s maps, B̂N,n (n =
1, . . . , N), in the context of the three perturbation-based criteria for quantum chaos. As
remarked in section 4.1, perturbations affecting the middle qubit(s) cause correlated changes
to the state in phase space across the smallest possible distances. Up until now we have applied
all perturbations to the rightmost, least significant qubit in position. Since the application of
Ĉ† as a perturbation to this qubit would undo the dynamics in momentum in the case of
the extremal quantum baker’s map, B̂N,N , one might judge this perturbation to be atypical,
upsetting the crucial momentum dynamics of the map. To avoid this, we choose henceforth
the total number of qubits N to be odd, and we perturb the middle qubit.

The perturbation we choose for this qubit is a simple binary perturbation, a rotation by
angle ±2πα about the y axis,

Ûk(α) ≡ 1̂12(N−1)/2 ⊗ eπ i(−1)kασ̂y ⊗ 1̂12(N−1)/2 . (5.1)

The perturbation is conditioned on the binary environmental states |k〉E, k = 0 or 1. To be
precise, after each iteration of the map, the system couples to its environment through a joint
conditional evolution with end result

ρ̂total = 1
2

[(
Û0ρ̂Û

†
0

) ⊗ |0〉E〈0| +
(
Û1ρ̂Û

†
1

) ⊗ |1〉E〈1|]. (5.2)

To avoid inapt comparisons, we use α = 0.2 (rotation angle 0.4π ) and initial system state
|ψ0〉 = |0〉⊗N throughout this section.

We can cope with the unwanted perturbation in many different ways. One possibility is
to accept an increase in entropy and average over all perturbation histories by tracing out the
environment. The system entropy, HS = −tr(ρ̂ log ρ̂), then increases at an initially constant
linear rate for all quantum baker’s maps. This is shown for the quantizations using N = 5
qubits in figure 2(a) and N = 11 qubits in figure 2(b). The rate of entropy production for the
different quantizations is nearly the same for the first t = (N − 1)/2 iterations. In contrast
to the other quantizations, the entropy produced by the extremal map, B̂N,N , remains constant
for times beyond t = (N − 1)/2 before resuming its climb towards the maximal entropy of 5
or 11 bits. Thus, although there is a quantitative change in entropy production at later times,
the different baker’s maps behave qualitatively the same. These numerical results support the
simple analysis of section 4.2.2.

Alternatively, if the above entropy production proves unacceptable, we could instead
perform a measurement on the environment at each time step to record which perturbation
actually occurs. Consider the perturbation history of all 1’s. The fidelity decay between two
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Figure 2. The rate of increase in entropy is initially linear for all (a) five-qubit and (b) eleven-qubit
quantizations of the baker’s map. The rate of decrease in fidelity is initially exponential for all
(c) five-qubit and (d) eleven-qubit quantizations.

initially equal quantum states that evolve either according to this extremal perturbation history
or the unperturbed map,

F(t) = |〈ψ0|
(
B̂

†
N,nÛ

†
1

)t
(B̂N,n)

t |ψ0〉|2, (5.3)

might be used as an indicator of the underlying dynamics of the map. The rate of fidelity
decay for all quantum baker’s maps is initially exponential. This is shown in figures 2(c)
and 2(d) for the five-qubit and eleven-qubit quantizations. Although the fidelity corresponding
to the extremal map, B̂N,N , stalls at approximately t = (N + 1)/2 iterations, all quantizations
are found to exhibit decay rates which are initially exponential. Again, these numerical results
support the simple analysis of section 4.2.1.

The iteration at which the entropies and fidelity decays first become appreciably different
for the various quantizations remains at t = (N +1)/2 as N increases, and thus our conclusions
become stronger in the limit of large N. To keep our analysis strictly in the quantum regime,
however, we focus on the five-qubit quantizations for the remainder of this section.

To investigate hypersensitivity to perturbation, we first consider a particularly intuitive
algorithm for grouping vectors, which is based on finding structure produced by the temporal
order of the perturbations. Each grouping corresponds to measuring, after a fixed number of
iterations t, the environment states—and, hence, the applied perturbation—at l � t times. The
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Figure 3. The minimum information Imin needed to reduce the entropy to H after 16 map iterations,
using the temporal grouping algorithm, for all perturbed five-qubit quantizations of the baker’s
map (n = 1, . . . , 5). The upper and rightmost dotted curves are the approximate sphere-grouping
trade-off for random vectors in d = 32 dimensions (equation (2.17)), while the lower dotted
line is the linear trade-off for random product vectors (equation (2.25)). The inset shows the
hypersensitivity parameter s for each quantization.

2t perturbation histories—and their final states—are thus grouped into 2l sets, each containing
2t−l states. It takes Ī = l bits to specify a group.

As an example of this procedure, suppose we have t = 4 iterations and we choose to
measure the first and last states of the environment. Thus l = 2, and all histories are grouped
into 2l = 4 sets of 2t−l = 4 binary strings in the form 0 ∗ ∗ 0, 1 ∗ ∗ 0, 0 ∗ ∗1 and 1 ∗ ∗1, where
* denotes an arbitrary entry. Defining

|k1k2 · · · kt 〉 ≡ Ûk1B̂N,nÛk2B̂N,n · · · Ûkt
B̂N,n|ψ0〉, (5.4)

the final state of the system, conditioned on measurement results i and j for the first and last
environment qubits, is

ρ̂ij = 2l−t
∑

k2,k3∈{0,1}
|ik2k3j 〉〈ik2k3j |. (5.5)

Consequently, at the expense of storing l = 2 bits of information, we can, on average, reduce
the entropy to

H̄ = − 1

2l

∑
i,j∈{0,1}

tr(ρ̂ij log ρ̂ij ). (5.6)

The particular 2 bits stored in this example might not be the optimal choices. There are
countless other measurements to consider, some of which no doubt lead to lower average
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Figure 4. The minimum information Imin needed to reduce the entropy to H after t map iterations,
where 5 � t � 18, for the perturbed five-qubit Balazs–Voros–Saraceno quantization of the baker’s
map (n = 1), using the temporal grouping algorithm. The dotted curve is the sphere-grouping
trade-off for random vectors in 32 dimensions. The inset shows the hypersensitivity parameter s
at each iteration.

entropies. For the moment, however, we restrict our measurements to the above type and
minimize H̄ over the

(
t

l

)
possible choices for the measurement times. Denoting this minimum

entropy by H, the minimum information needed to reduce the average system entropy to H is
then Imin = l bits. Although there is no guarantee that l is in fact the overall minimum, this
simple scheme, which we call the temporal grouping algorithm, proved superior to previously
used schemes (e.g., those discussed in [7]) for the maps and perturbations considered here.

Using this procedure, in figure 3 we plot Imin versus H for all perturbed five-qubit quantum
baker’s maps after t = 16 map iterations (solid lines). The perturbing parameter remains at
α = 0.2 and initial state at |ψ0〉 = |0〉⊗N . The region of interest regarding the question
of quantum chaos lies to the right where Imin is small. Here we see that, except for the
quantizations with n close to N = 5, a very large amount of information is required to reduce
the system entropy by a small amount. This is a distinguishing characteristic of chaos, which
is absent for the extremal quantization (n = N). When Imin is small, the information–entropy
trade-off is characterized by the hypersensitivity parameter s (equation (2.18)). The inset in
figure 3 shows this quantity for all five quantizations. Recall that 1/s is the reduction in system
entropy purchased by gathering 1 bit of information about the environment. Although entropy
reduction is affordable for the extremal quantization, 1 bit buys very little when n approaches 1.
The dotted lines show our theoretical trade-offs for random vectors (upper and rightmost) and
random product vectors (lower), given by equations (2.17) and (2.25), respectively. When n
approaches 1, the information–entropy trade-off approaches that expected for random vectors,
while for n = N , it is bounded by the trade-off for random product vectors.
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Figure 5. The minimum information Imin needed to reduce the entropy to H after t map iterations,
where 5 � t � 18, for the perturbed five-qubit extremal quantization of the baker’s map (n = N),
using the temporal grouping algorithm. The dotted line is the trade-off for random product vectors
(equation (2.25)). The inset shows the hypersensitivity parameter s at each iteration.

Using the same grouping algorithm, we plot in figure 4 the information–entropy trade-off
for a growing number of iterations of the Balazs–Voros–Saraceno quantization (n = 1). The
figure shows Imin versus H for 5–18 iterations of B̂5,1, and in the inset, the corresponding
value of s. To a rough approximation, our hypersensitivity signature s appears to grow
exponentially with the number of iterations. This map thus exhibits numerical evidence of
exponential hypersensitivity to perturbation. Note, however, that the trade-off violates the
sphere-grouping bound (2.17) derived from random states for t � 16 (dotted line), which
means the current method for gathering information about the environment is not optimal, a
situation we discuss further below. The extremal quantization displays a strikingly different
behaviour. The information–entropy trade-off and the parameter s for 5–18 iterations of B̂5,5

are shown in figure 5. In this case the information–entropy trade-off remains approximately
linear for all levels of iteration, with a very roughly constant s. There is no evidence of
hypersensitivity to perturbation.

We now investigate the hypersensitivity parameter in greater detail for the Balazs–Voros–
Saraceno and extremal quantizations. The graphs of s in the insets of figures 4 and 5 are
redrawn, now on a logarithmic scale, as the dashed lines in figures 6(a) and (b), respectively.
The horizontal dotted lines in each of these figures are the upper bounds (2.22) and (2.24),
respectively, corresponding to the values of s for random vectors and random product vectors.
Note that in both cases the dashed lines cross these bounds. This indicates that the temporal
groupings used up until now are not optimal. Indeed, in the case of the Balazs–Voros–
Saraceno quantization, by considering groupings which correspond to partitions of projective
Hilbert space into two equal volumes, we find that 1 bit of information can buy larger entropy
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Figure 6. The hypersensitivity parameter s after t map iterations, where 5 � t � 18, for the
perturbed five-qubit (a) Balazs–Voros–Saraceno (n = 1) and (b) extremal (n = N) quantizations
of the baker’s map. The spurious higher values of s arising from the temporal groupings (dashed
lines) are significantly reduced using a genetic-algorithm approach (solid lines). The dotted lines
are the approximate upper bounds on s corresponding to (a) random vectors (equation (2.22)) and
(b) random product vectors (equation (2.24)).

reductions when t � 16. This method of grouping vectors, however, works well only for
distributions that are close to random.

We now consider grouping algorithms that are not constrained by a supposed temporal
structure of the vector distribution. Although optimal groupings can always be found by simply
testing every possibility, the size of the search space is doubly exponential in the number of
map iterations. We thus turn to the theory of combinatorial optimization. Specifically, a
simple genetic algorithm [32] was used to partition vectors into two groups with the goal of
minimizing the average conditional entropy H̄ . Although these groups were not constrained
to be of equal size, the returned solution always corresponded to Ī = 1 ± 0.003, and thus
we can take H(Imin = 1) = H̄ to a very good approximation. The corresponding value of
s for this method is plotted as the solid line in figure 6. In many cases the genetic algorithm
located precisely the same vector grouping that was found previously by the temporal grouping
algorithm. The spurious higher values of s, however, are now significantly reduced for both
quantizations. Although figure 6(a) remains incomplete due to computational constraints, for
the data points calculated, log s has regained its linear approach to the upper bound, where
it eventually will saturate. The difference between the two quantizations under single-qubit
perturbations is now difficult to dispute. The criterion of hypersensitivity to perturbation thus
unmistakeably distinguishes the dynamics of the extremal quantum baker’s map (n = N) as
qualitatively different from the Balazs–Voros–Saraceno quantization (n = 1).

6. Conclusion

This paper addresses the difficult question of how to characterize quantum chaos dynamically
in the hard quantum regime, far from the classical limit where signatures of the classical
sensitivity to initial conditions can be identified in the quantum properties of a system. In this
hard quantum regime, criteria for quantum chaos rely on studying the effects of perturbing
the quantum dynamics. In this paper we study the three perturbation-based criteria that
have been proposed: linear increase of entropy when a system is coupled to a perturbing
environment; exponential decay of the fidelity between the unperturbed dynamics and a
modified dynamics; and hypersensitivity to perturbation under stochastic perturbations of the
dynamics. Hypersensitivity to perturbation is formulated in terms of the entropy reduction
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achieved by acquiring information about the perturbation, which we call the information–
entropy trade-off. Of these three criteria, hypersensitivity to perturbation is by far the most
difficult to define rigorously and to investigate analytically and numerically.

We apply these three criteria to a set of qubit-based quantizations of the baker’s map.
These quantizations range from a map that has a trivial unentangling shift dynamics to the
original Balazs–Voros–Saraceno quantized map, which is highly entangling. We find, through
a combination of analytical arguments and numerical results, that all the quantizations exhibit
a linear entropy increase and an exponential fidelity decay. In contrast, we show that the
criterion of hypersensitivity to perturbation distinguishes the entangling quantizations from
the shift map. In particular, by focusing on the trivial shift map and the Balazs–Voros–
Saraceno map, our numerical work on hypersensitivity provides compelling evidence that
these maps behave quite differently under stochastic perturbations, as revealed by studying
the information–entropy trade-off for these maps.

The reason that hypersensitivity to perturbation is different from the other two
perturbation-based criteria is not hard to identify. Linear entropy increase and exponential
fidelity decay both tell one about how widely a perturbation disperses vectors in Hilbert space,
but they provide no information about how randomly the perturbed vectors populate Hilbert
space. In contrast, the randomness of the distribution of perturbed vectors is precisely what
the information–entropy trade-off is sensitive to.

One way to quantify the trade-off in a single number is provided by the hypersensitivity
parameter s: s−1 is defined in terms of the information–entropy trade-off as the entropy
reduction purchased by an optimal 1 bit of information about the perturbation, but s can be
interpreted as the number of Hilbert-space dimensions explored randomly by the perturbed
vectors. Thus when s increases exponentially, as our numerical work indicates for the Balazs–
Voros–Saraceno map, it signals that the perturbed vectors are populating an exponentially
increasing number of dimensions in a random way. Linear entropy increase and exponential
fidelity decay do not provide information about this property of chaotic quantum dynamics.

The numerical hypersensitivity results in this paper are obtained for single-qubit
perturbations of the five-qubit baker’s maps. Investigating more general perturbations would
involve dealing with more qubits and thus would require considerably greater computational
resources. To reduce the required computational resources in future investigations of
hypersensitivity, it would be highly desirable to have an analytical argument or sufficient
numerical evidence to demonstrate convincingly that the hypersensitivity parameter s is, by
itself, a reliable signature of hypersensitivity to perturbation. Were this established, numerical
investigations of hypersensitivity could be reduced from computing the entire information–
entropy trade-off to calculating the trade-off only for the case of 1 bit of acquired information.
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Appendix A. information–entropy trade-off for random vectors

Consider N state vectors distributed randomly in a d-dimensional Hilbert space, where we
assume that N � d. Given an entropy H � log d, we group the vectors into groups that on
average have this entropy and then ask how much information is required to specify a group.
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For a given H, we are interested in the grouping that minimizes the required information, as
in equation (2.9). The relation between Imin and H is the information–entropy trade-off. In
this appendix we formulate an approximate information–entropy trade-off for random vectors
by grouping the vectors into spheres on projective Hilbert space whose radius is given by a
Hilbert-space angle φ. This being an approximate trade-off relation, we denote the information
by I instead of Imin.

The sphere-grouping model is based on results, given in [14], for the volume and entropy
of a Hilbert-space sphere. The model was formulated in [7] and refined in [11].

The number of spheres of radius φ that can be packed into projective Hilbert space is
given by equation (A.18) of [14],

Nd(φ) = Vd

Vd(φ)
= (sin2φ)−(d−1), (A.1)

where Vd(φ) is the volume of a sphere of radius φ and Vd is the total volume of projective
Hilbert space in d dimensions. The entropy of a mixture of vectors distributed uniformly
within a sphere of radius φ is given by equations (B.5)–(B.6) of [14],

Hd(φ) = −λ0 log λ0 − (1 − λ0) log

(
1 − λ0

d − 1

)
= H2(λ0) + (1 − λ0) log(d − 1), (A.2)

where H2(λ0) is the binary entropy corresponding to the largest eigenvalue

λ0 = 1 − d − 1

d
sin2φ. (A.3)

If we group the N vectors into groups of radius φ, the number of vectors per group is

NV (φ) = N
Nd(φ)

= N (sin2φ)d−1, (A.4)

provided this number is not less than 1. There is a critical angle, φb, at which there is only
one vector per group, i.e., (sin2φb)

d−1 = 1/N . For φ � φb, there are Nd(φ) groups, each
containing approximately NV (φ) vectors, but for φ � φb, there are N groups, each containing
just one vector. The information required to specify a group at resolution angle φ is thus
I (φ) = logN for φ � φb and I (φ) = logNd(φ) for φ � φb. There is another critical angle,
φd , at which there are only two groups, i.e., (sin2φd)

d−1 = 1/2. For φ � φd , we cannot talk
about grouping the vectors into spheres of equal radius, so we remove these angles φ from
consideration. Thus we write the information to specify a group as

I (φ) =
{

logN , φ � φb,

logNd(φ) = −(d − 1) log(sin2φ), φb � φ � φd.
(A.5)

For φb � φ � φd , we have sin2φ = 2−I/(d−1) = e−I ln 2/(d−1), which shows that there are
two important cases in terms of the number of vectors. If logN � d (N � 2d), a situation
we refer to as a sparse collection of random vectors, we have I � logN � d, giving

sin2φ ≈ 1 − I ln 2

d − 1
�⇒ φ ≈ π

2
−

√
I ln 2

d − 1
(A.6)

over the entire range φb � φ � φd . In particular, we have φb ≈ π/2 − √
ln N /(d − 1). The

number of groups increases so fast as φ retreats from π/2 that for a sparse collection, there is
a group for each vector when the radius φ is still quite close to π/2. In contrast, if logN � d

(N � 2d), which we call a dense collection of vectors, then φb ≈ sin φb = 2− logN /2(d−1) � 1,
meaning that to get to one vector per group, the radius φb must be small.

When we turn to the entropy of the groups, it becomes clear that there is yet another
critical angle, φc, the angle at which the number of vectors per group equals the Hilbert-space
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dimension, i.e., NV (φc) = d or I (φc) = logN − log d. For φ � φc, there are sufficiently
many vectors in each group to explore all the available Hilbert-space dimensions, so the
entropy is close to the entropy Hd(φ) of a mixture of vectors distributed uniformly within a
sphere of radius φ in d dimensions. In contrast, for φb � φ � φc, the vectors in a group can
explore roughly only NV (φ) = N (sin2φ)d−1 = 2−IN dimensions, thus giving an entropy
close to HNV (φ)(φ). Finally, for φ � φb, there is only one vector per group, so H = 0.

Our main interest is the relation between H and I, so we eliminate the radius φ from the
above expressions. The region φ � φb gives H = 0 and I = logN . For φb � φ � φc, i.e.,
logN � I � logN − log d, we have

H = HNV (φ)(φ) = H2(λ) + (1 − λ) log(2−IN − 1), (A.7)

where

λ = 1 − 2−IN − 1

2−IN
2−I/(d−1) = 1 − 2−I/(d−1)

(
1 − 2I

N

)
. (A.8)

Finally, for φc � φ � φd , i.e., logN − log d � I � 1, we have H = Hd(φ), with

λ0 = 1 − d − 1

d
2−I/(d−1). (A.9)

Summarizing, we have

H =
{

HNV (φ)(φ) = H2(λ) + (1 − λ) log(2−IN − 1), logN � I � logN − log d,

Hd(φ) = H2(λ0) + (1 − λ0) log(d − 1), logN − log d � I � 1,

(A.10)

with λ and λ0 given by equations (A.8) and (A.9). Equation (A.10) is the approximate trade-off
relation we are seeking.

The important part of the trade-off relation is the part that is independent of the number of
random vectors, i.e., for 1 � I � logN − log d. Note that to investigate this region, we need
N � d, but we do not need N so large that the random vectors sample generic vectors, which
would require at least N ∼ 2d vectors, i.e., a dense collection. We emphasize that we do not
need a dense collection of vectors to investigate the important part of the trade-off relation.

Before going further, it is useful to put the trade-off relation (A.10) in other forms, which
can be easily specialized to the case of a sparse collection of vectors. For the second case,
which is the case of interest, we can write

Hd(φ) = log d − 1

d
([d(1 − 2−I/(d−1)) + 2−I/(d−1)]

× log[d(1 − 2−I/(d−1)) + 2−I/(d−1)] − I2−I/(d−1)). (A.11)

For a sparse collection of vectors, for which I � logN − log d � logN � d, or anytime we
have I � d, we can approximate this by

Hd(φ) = log d − 1

d
((1 + I ln 2) log(1 + I ln 2) − I ). (A.12)

We can manipulate the first case in equation (A.10) in a similar way:

HNV (φ)(φ) = logN − I − λ log

(
Nλ

2I

)
− (1 − λ) log

(
1 − λ

1 − 2I /N

)
. (A.13)

The factor 2I /N increases from 1/d at I = logN − log d to 1 at I = logN . For a sparse
collection, we can approximate λ by

λ = 2I

N
+

I ln 2

d − 1

(
1 − 2I

N

)
. (A.14)
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The second term is always small. When the first term dominates, the second two terms in
equation (A.13) are small. When the first term is as small or smaller than the second, the
second two terms in equation (A.13) are again small. Thus for a sparse collection, it is always
a good approximation to use HNV (φ)(φ) = logN − I .

The conclusion of these considerations is that for sparse collections, the trade-off
relation (A.10) is well approximated by

H =



logN − I, logN � I � logN − log d,

log d − 1

d
((1 + I ln 2) log(1 + I ln 2) − I ), logN − log d � I � 1.

(A.15)

This is the form of the trade-off relation that we use in section 2.1.2. When d is large, it is
quite a good approximation for sparse collections of random vectors, certainly more than
adequate given the approximate character of the entire sphere-grouping model. These
approximate expressions are poorest at the knee between the two behaviours, which is also
where the approximate treatment of the grouping is at its worst.

Appendix B. Entropy of equal partitions of projective Hilbert space

Let |ej 〉, j = 1, . . . , d, be an orthonormal basis for a d-dimensional Hilbert space, and let

P̂+ =
n∑

j=1

|ej 〉〈ej | (B.1)

be the projector onto the subspace S+ spanned by the first n vectors,

P̂− =
n+m∑

j=n+1

|ej 〉〈ej | (B.2)

be the projector onto the subspace S− spanned by the next m vectors, and P̂0 = 1̂1− P̂+ − P̂− be
the projector onto the subspace S0 spanned by the remaining d − n − m vectors. An arbitrary
normalized vector can be expanded uniquely as

|ψ〉 = cos ξ(cos θ |χ〉 + sin θ |η〉) + sin ξ |φ〉, (B.3)

where |χ〉 ∈ S+, |η〉 ∈ S−, and |φ〉 ∈ S0 are normalized vectors. The angle ξ is the Hilbert-
space angle between |ψ〉 and the span of S+ and S−, and θ is the Hilbert-space angle between
the projection of |ψ〉 into the span of S+ and S−, i.e., (P̂+ + P̂−)|ψ〉, and the subspace S+.

We are interested in the density operator formed from all pure states whose projection
into the span of S+ and S− is closer to S+ than an angle �,

ρ̂ = N

∫
θ��

dS2d−1|ψ〉〈ψ |, (B.4)

where N is a normalization factor. Here and throughout dSj denotes the standard integration
measure on the j -sphere, and Sj = ∫

dSj is the volume of the j -sphere. This region of
states is the analogue of the intersection in three real dimensions of a wedge of opening angle
2� with the unit sphere. It is clear that ρ̂ is invariant under unitary transformations that are
block-diagonal in the three subspaces, which implies that ρ̂ has the form

ρ̂ = λ+P̂+ + λ−P̂− + λ0P̂0. (B.5)

Our job is to determine the three eigenvalues, λ± and λ0, which satisfy

nλ+ + mλ− + (d − n − m)λ0 = 1. (B.6)
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It turns out that λ0 = 1/d, as we show below, so we have

λ− = 1

d

(
1 +

n

m
(1 − dλ+)

)
. (B.7)

A small change in |ψ〉 can be written as

|dψ〉 = dξ(−sin ξ(cos θ |χ〉 + sin θ |η〉) + cos ξ |φ〉) + sin ξ |dφ〉
+ cos ξ(dθ(−sin θ |χ〉 + cos θ |η〉) + cos θ |dχ〉 + sin θ |dη〉). (B.8)

This gives a line element on normalized vectors,

ds2 = 〈dψ |dψ〉 = dξ 2 + sin2ξ 〈dφ|dφ〉 + cos2ξ(dθ2 + cos2θ〈dχ |dχ〉 + sin2θ〈dη|dη〉), (B.9)

and a corresponding volume element on the (2d − 1)-sphere of normalized vectors,

dS2d−1 = sin2(d−n−m)−1 ξ cos2(n+m)−1 ξ dξ

× cos2n−1 θ sin2m−1 θ dθ dS2(d−n−m)−1 dS2n−1 dS2m−1. (B.10)

Normalizing the density operator gives

1 = tr(ρ̂) = N

∫
θ��

dS2d−1

= N S2(d−n−m)−1S2n−1S2m−1

∫ π/2

0
dξ sin2(d−n−m)−1ξ cos2(n+m)−1ξ

×
∫ �

0
dθ cos2n−1θ sin2m−1θ. (B.11)

We first verify that λ0 = 1/d. Letting |e0〉 be any normalized vector in S0, we have

λ0 = 〈e0|ρ̂|e0〉 = N

∫
θ��

dS2d−1|〈e0|ψ〉|2

= N S2n−1S2m−1

∫ π/2

0
dξ sin2(d−n−m)+1ξ cos2(n+m)−1ξ

×
∫ �

0
dθ cos2n−1θ sin2m−1θ

∫
dS2(d−n−m)−1|〈e0|φ〉|2. (B.12)

Using ∫
dS2(d−n−m)−1|〈e0|φ〉|2 = S2(d−n−m)−1

d − n − m
(B.13)

and the expression for the normalization constant from equation (B.11) and changing
integration variable to u = sin2ξ , we get

λ0 = 1

d − n − m

∫ 1
0 du ud−n−m(1 − u)n+m−1∫ 1

0 du ud−n−m−1(1 − u)n+m−1

= 1

d − n − m

�(d − n − m + 1)�(n + m)/�(d + 1)

�(d − n − m)�(n + m)/�(d)

= 1

d
. (B.14)

Similarly, to find λ+, we let |e+〉 be any normalized vector in S+ and write

λ+ = 〈e+|ρ̂|e+〉 = N

∫
θ��

dS2d−1|〈e+|ψ〉|2

= N S2(d−n−m)−1S2m−1

∫ π/2

0
dξ sin2(d−n−m)−1 ξ cos2(n+m)+1 ξ

×
∫ �

0
dθ cos2n+1 θ sin2m−1θ

∫
dS2n−1|〈e+|χ〉|2. (B.15)
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Using ∫
dS2n−1|〈e+|χ〉|2 = S2n−1

n
(B.16)

and the expression for the normalization constant and changing integration variables to
u = sin2ξ and v = sin2θ , we get

λ+ = 1

n

∫ 1
0 du ud−n−m−1(1 − u)n+m∫ 1

0 du ud−n−m−1(1 − u)n+m−1

∫ sin2 �

0 dv vm−1(1 − v)n∫ sin2�

0 dv vm−1(1 − v)n−1

= 1

n

�(d − n − m)�(n + m + 1)/�(d + 1)

�(d − n − m)�(n + m)/�(d)

∫ sin2�

0 dv vm−1(1 − v)n∫ sin2 �

0 dv vm−1(1 − v)n−1

= n + m

nd

∫ sin2 �

0 dv vm−1(1 − v)n∫ sin2�

0 dv vm−1(1 − v)n−1
. (B.17)

We now specialize to the case of interest, n = m and � = π/4, so that ρ̂ is constructed
from pure states occupying one of two halves of Hilbert space:

λ+ = 2

d

∫ 1/2
0 dv vn−1(1 − v)n∫ 1/2

0 dv vn−1(1 − v)n−1
. (B.18)

The integrals can be evaluated as∫ 1/2

0
dv vn−1(1 − v)n = n!(n − 1)!

2(2n)!

(
1 +

�(n + 1/2)√
πn!

)
,∫ 1/2

0
dv vn−1(1 − v)n−1 = [(n − 1)!]2

2(2n − 1)!
.

(B.19)

Plugging these results into equations (B.18) and (B.7), we get

λ± = 1

d

(
1 ± �(n + 1/2)√

πn!

)
= 1

d

(
1 ± (2n)!

22n(n!)2

)
. (B.20)

When n = 1, we get λ+ = 3/2d and λ− = 1/2d, and when n = 2, λ+ = 11/8d and
λ− = 5/8d. For large n (and d), we can use Stirling’s formula to write

λ± ≈ 1

d

(
1 ± 1√

πn

)
. (B.21)

The von Neumann entropy of ρ̂ can be put in the form

H = −nλ+ log λ+ − nλ− log λ− − (d − 2n)λ0 log λ0

= log d − 2n

d
(1 − H2(dλ+/2)). (B.22)

For fixed d, this is a decreasing function of n. For large n (and d), we can use equation (B.21)
to write H2(dλ+/2) ≈ 1 − 1/2πn ln 2 and

H ≈ log d − 1

πd ln 2
= log d − 0.46

d
. (B.23)
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